Use of Artificial Neural Networks (ANNs) for the Analysis and Modeling of Factors That Affect Occupational Injuries in Large Construction Industries
نویسندگان
چکیده
INTRODUCTION Occupational injuries as a workforce's health problem are very important in large-scale workplaces. Analysis and modeling the health-threatening factors are good ways to promote the workforce's health and a fundamental step in developing health programs. The purpose of this study was ANN modeling of the severity of occupational injuries to determine the health-threatening factors and to introduce a model to predict the severity of occupational injuries. METHODS This analytical chain study was conducted in 10 large construction industries during a 10-year period (2005-2014). Nine hundred sixty occupational injuries were analyzed and modeled based on feature weighting by the rough set theory and artificial neural networks (ANNs). Two analytical software programs, i.e., RSES and MATLAB 2014 were used in the study. RESULTS The severity of occupational injuries was calculated as 557.47 ± 397.87 days. The findings of both models showed that the injuries' severity as a health problem resulted in various factors, including individual, organizational, health and safety (H&S) training, and risk management factors, which could be considered as causal and predictive factors of accident severity rate (ASR). CONCLUSION The results indicated that ANNs were a reliable tool that can be used to analyze and model the severity of occupational injuries as one of the important health problems in large-scale workplaces. Additionally, the combination of rough set and ANNs is a good and proper chain approach to modeling the factors that threaten the health of workforces and other H&S problems.
منابع مشابه
Path analysis of occupational injuries based on the structural equation modeling approach: a retrospective study in the construction industry
Background and aims: The construction industry, sites, and projects are the most dangerous industries in terms of the risk of occupational accidents and injuries. Important factors that have led the industry as a health, safety, environment (HSE) high-risk industry in the world can be cited such as continuous changes in construction projects, using a lot of resources, poor working conditions,...
متن کاملApplication of Artificial Neural Network and Genetic Algorithm for Predicting three Important Parameters in Bakery Industries
Farinograph is the most frequently used equipment for empirical rheological measurements of dough. It’suseful to illustrate quality of flour, behavior of dough during mechanical handling and texturalcharacteristics of finished products. The percentage of water absorption and the development time of doughare the most important parameters of farinography for bakery industries during production. H...
متن کاملDelineation of alteration zones based on kriging, artificial neural networks, and concentration–volume fractal modelings in hypogene zone of Miduk porphyry copper deposit, SE Iran
This paper presents a quantitative modeling for delineating alteration zones in the hypogene zone of the Miduk porphyry copper deposit (SE Iran) based on the core drilling data. The main goal of this work was to apply the Ordinary Kriging (OK), Artificial Neural Networks (ANNs), and Concentration-Volume (C-V) fractal modelings on Cu grades to separate different alteration zones. Anisotropy was ...
متن کاملNeural Network Meta-Modeling of Steam Assisted Gravity Drainage Oil Recovery Processes
Production of highly viscous tar sand bitumen using Steam Assisted Gravity Drainage (SAGD) with a pair of horizontal wells has advantages over conventional steam flooding. This paper explores the use of Artificial Neural Networks (ANNs) as an alternative to the traditional SAGD simulation approach. Feed forward, multi-layered neural network meta-models are trained through the Back-...
متن کاملModeling of Resilient Modulus of Asphalt Concrete Containing Reclaimed Asphalt Pavement using Feed-Forward and Generalized Regression Neural Networks
Reclaimed asphalt pavement (RAP) is one of the waste materials that highway agencies promote to use in new construction or rehabilitation of highways pavement. Since the use of RAP can affect the resilient modulus and other structural properties of flexible pavement layers, this paper aims to employ two different artificial neural network (ANN) models for modeling and evaluating the effects of ...
متن کامل